Digital Design for Astrophysics
Detectors

Collin Bradford (Homeschool Student)
Dr. Chris Stoughton (Fermi National Accelerator Laboratory)

Abstract

Sensors in particle detectors often have to sample at a rate that far outpaces typical computers
today. One of the solutions for this is to use FPGAs or Field Programmable Gate Arrays to
process and condense the signals from the sensors before sending the result to a computer for

storage and further processing.

This paper reports on the project to design a data acquisition system to be used for the Nano
Cam project. This project uses a phototube attached to a telescope to precisely measure the
photons coming from a star. The FPGA, or Field Programmable Gate Array, will take the output

from the phototube and process it, looking for spikes in the signal that denote a pulse.

The primary target for this experiment, the Crab Pulsar, is a neutron star that is an estimated 20
Km in diameter. (Crab Pulsar. n.d.) In addition to the regular pulses that happen at 30 Hz,
there is an extremely fast pulse that happens randomly every few hours. The pulse comes from
a part of the star about the size of a classroom and it pulses with the intensity of the sun. By
measuring the star with the phototube, we hope to see if the intensity change is in the visible

light spectrum.

Introduction

Background

To get an idea of what an FPGA is, it is helpful to explore the inner workings of a CPU or other

digital logic circuit. A digital logic circuit is a device that uses electricity to turn wires on and off

to produce signals. We usually refer to the on state as one, and the off state as zero. Scientists
and engineers have been able to develop hardware that uses these signals to perform basic

logic operations like: “and”, “or”, “not”, and “xor”. From the basics of digital logic and some more

advanced hardware, we are able to produce digital logic circuits like processors.

Processors work by taking a basic set of instructions and following them sequentially. At the
heart of a processor are registers. These each store information. By setting and changing
registers we can add, subtract, multiply, and do any math calculation. An example of this would
be taking a number stored in register location A45, adding it with location B46, and storing the
result in register C78. (x86 Instruction Listing, Atmel 8-bit Instruction Set Listing) Luckily, this
low level programming is all taken care of by compilers and we never usually have to do this

when we program in compiled languages.

Because of how processors are designed, they are really good at following orders sequentially.
They are designed so that they can run code that is different each time it is turned on. This
allows for different programs to run on the processor without changing the internal design of the
logic circuit. However, when it comes to processing large quantities of numbers extremely fast
with the same algorithm, processors have a limit. For the nanoCam project, we are sampling at
1.5 gigasamples per second. There are a lot of processors that clock in at over 3 ghz, but since

it takes multiple clock cycles for each datapoint, this is not a viable solution.

One alternative is to use FPGAs. FPGA stands for Field Programmable Gate Array. FPGAs
are devices that contain thousands of CLBs or Configurable Logic Blocks. These are blocks of
basic logic circuits like the ones mentioned above that can be connected together in different
ways to produce a logic circuit for a specific purpose. To do this, a designer will design a circuit
in code and schematics on the computer. The compiler will then take those designs and map
out a logic circuit on the device using the CLBs. The design is then loaded onto a flash memory
device that communicates with the FPGA. Upon startup, the FPGA will read from the flash
memory, configure the logic inside, and start working. FPGAs can be programmed to take the
place of almost any logic circuit. (Field-programmable Gate Arrays, Wikipedia) Many designs

actually use a processor or multiple processors on the FPGA at the same time.

Context of this work

The data acquisition system | am helping build this summer is going to be used for the
nanoCam project. The nanoCam is basically a photon counter that is going to be combined with
a telescope that will be used to do high resolution photon detection for objects in space. The

primary target for the nanoCam is the Crab Pulsar.

The Crab Pulsar one of the only neutron stars that emits light in the visible spectrum that we can
see from earth. Most neutron stars can only be seen using a radio telescope. From observing
the Crab Pulsar with a radio telescope, we can see the normal pulses that come from the
rotation of the pulsar. In addition to those, however, we can also see a major pulse that
happens once every few hours. We estimate the size of the pulsar to be around 20 Km. The
major pulse, however, is coming from a region about the size of a classroom. When the major
pulse happens every few hours, it changes brightness with around the intensity of the sun. By
looking through the optical telescope, we hope to gain better knowledge as to why the Crab

Pulsar has a major pulse every few hours.

Methods

Equipment

To see the Crab Pulsar, we are using a photon counter mounted on the back of a telescope.
The signal that comes out of the photon counter is an analog signal. In order to process the
signal, it must be digitized. This is done with a high speed analog to digital converter. It

samples the analog signal at 1.5 GSPS and sends that data out to the FPGA.

For signal processing, we are using the Captan board. This is an off the shelf data acquisition
system designed by engineers here at Fermilab. It comes in a hexagonal shape with the ADC

mounted directly below. The Captan board uses a Vertex 4 FPGA.

an]
w
=
o)
e}
[3+]
(]
£
S
=
o

Model DLC10
Serial XU - 45325

Captan board (left) with ADC (blue mostly hidden by Captan board. You can see a small blue square on the bottom

of the image. That’s the ADC board.) and the Xilinx JTag programming cable (red box to the right).

Firmware for the FPGA is developed using the ISE Design Suite provided by Xilinx, the
manufacturer of the FPGA. The firmware is written in VHDI code as well as schematics. Some
of the code used in the firmware design, like FiFo memory, is already written by Xilinx. To use
it, we specify some parameters and it generates the firmware module. For anything that is not
really common, however, the code has to be written out instead of generated. Once the code is

written, the compiler creates a design that can be created on the physical chip.

PeakFinder

MASTER CLK— ok

eS| ramat

— e
peak_finder_dh (25520
TIEEnk T e s T sz
= cata_valie
Ead_SP2{1 570 jmmpe——] n #r_mempiaa_witer_irig
adc_fiby_1_esmpdy
adc_fo T emply D\.._O
=az

Schematic view of the peak finder module | developed.

entity PeakFinder is
Port (clk : in S
reset : in

data in : in

signal_ threshold : in 5
user_samples after trig

empty ! in) 1
data_walid : in

X (255 downto 0) !
c VECTOR (T

7 downto 0):

data_ount : out
out_enable out
in_enable out std

end PeakFinder:

architecture Behavioral of PeakFinder is
tvpe data_array is array (0 to 15) of
signal data : data_ array;

unsigned (7 downto 0);

signal threshold : unsigned(7 downto 0 }:
signal samplesSinceTrig unsigned (15 downto 0);
signal userSamplesSinceTlrig : unsigned(1l5 downto 0);
signal out_en sig : std

begin

threshold <= unsigned(signal_threshold);
userSamplesSinceTrig <= unsigned(user_samples_after trig):
out_enable <= out_en sig:

process (clk)

begin
in enable <= '1';

if (reset = '0'} then--reset i= low
if (rising_ edge (clk)} then- ing edge of clk and reset is
if(empty = '0') then
data out <= data_in;
out_en sig <= '1';
else
if(samplesSinceTrig >= userSamplesSinceTrig)then——
out_en sig <= '0';
samplesSinceTrig <= (others => '0');
end if;
end if;
if(out_en =2ig = 'l')then --We took another sample.
samplesSinceTrig <= samplesSinceTrig + 1;
end. if:

Sample code from the peak finder module.

[Py —- T -

———cmeret_ M _dingss0)
n_mnsi —————0 B2 fnder_in_en

ctor (15 downto 0);

low

ur sample count matches t

Increase the sample count

To flash firmware to an FPGA, a JTag programming cable is used. This clever device actually
contains an FPGA of its own, a Spartan 3A, as well as a microcontroller. From the computer,
we can send it a design file, and it will flash the flash memory on the board. On startup, the

FPGA will read the flash memory and implement the design.

M

A snapshot of a small portion of the design viewed after the compiler has routed the connections to the different logic

resources.

For debugging, we can use the programming cable to see some of the signals inside the actual
FPGA. When the firmware is designed, we include a module that samples certain signals and
sends them over the JTag connection. After we flash the firmware, we can open a logic

analyzer program on the computer and see what is actually going on inside of the FPGA.

fethernet o...
/b data we

fethernet f...

¢ /psudo falling
fpaudo_fall.
fpaudo fall.
/paudo fall.
/paudo_fall.

Spaudo_fall.

/pIudo fall.

Jpaudn fall.

/paudo fall.

fpaudo_fall.
fpaudo fall.
/paudo fall.
/paudo_fall.

Spaudo_fall.

/pIudo fall.

Jpaudo fall.

/paudo fall.

Signals from the FPGA as viewed through the logic analyzer. The red one shows that the FIFO memory is
overflowing (As to be expected based on the current parameters.) The green signal is showing when data is being

written to the computer. The blue signals are the sawtooth wave being sent into the pulse finder.

Data

The data that comes into the FPGA comes in on every rising and falling edge of a 375 Mhz
clock. It comes over a 32 bit bus with four samples on every rising and falling edge. The
firmware on the FPGA analyzes the data at 100 Mhz so to keep up, it analyzes 32 samples
each clock cycle. When it finds a peak, it reads the next few samples and sends them to the
computer. The computer can set registers that define the threshold that it compares the data to

and how many samples are read after it detects an event.

Results

So far, | have been able to use the provided ethernet module in the FPGA firmware to
communicate with the computer allowing me to send data to the computer and set registers

inside the FPGA that change parameters in the program.

I have also developed a peak finder module that analyzes the incoming data for peaks and
sends those portions out to the computer. By setting registers in the FPGA, the user can set the
threshold point for a peak and select the minimum number of samples that should be sent back

after a peak.

On the computer end, | have written a python script that reads the data from the FPGA and
plots it on a graph to show the waveform. Python is a scripting language which means that the
program is stored as a text file and compiled when it is being run. This is different than a
compiled language where the program is compiled once and stored in an executable file. To
read data from the Captan board, | send a small packet that tells the FPGA where to send the
data. | then set a register that tells it to turn on the data sending module. Once the module is
enabled, it will then start sending data packets and all | have to do is choose a few, read the

values, and plot them on a graph.

Right now, | am currently testing the design using a firmware module | developed that sends a
sawtooth signal. By setting the registers for the pulse finder and looking at the output from the

python script, | am able to see how well my program is functioning.

350 T

300 |

250 |

200 |

150 |

100 | -

o

Sawtooth waveform from a firmware test. Some of the inconsistency is from the FIFO memory overflowing.

9t
o

CL = KO =
[Th T =]
ki
m =

o1}

[Ts]
rt+ ki

Output from the python script that obtains data from the FPGA.

248 28.358413 192.168.133.
249 28.358414 192.168.133.
258 28.358418 192.168.133.
251 28.358608 192.168.133.
252 28.358616 192.168.133.

[B L T S R S (N L]

192.
192.
g L P
192.
e

1658.133.199 LUDP
168.133.199 UDP
168.133.199 LUDP
168.133.199 LUDP
168.133.199 LDP

156868 26881
15688 26861
15668 2681
15686 2881
15668 2681

Packets arriving to the computer from the FPGA as seen in the Wireshark network analyzer.

18111868l 11lel6le elleesll e@alelele
18@ peleelle lellleal
111 11 aalealle
BEBEells Gopepele BREE1110 20810681
I ¥ T e

lesaless 11881106
11ialale elleeall
lallleal 1llelaele
11111118 @ea81681

pEoeelll eopeoose eoeledle 18111611

Raw data from the FPGA

1

paeooael oopopaRe

Getting Started Programming with FPGAs

Bagaeals cepaalll
galalels aapa0lea
elleaall ealelele
BaBeaREE BGeRlEele
2 Be 11111116
paeoegel eepazeal

49387
49387
49387
49387
49387

Getting into the world of FPGAs takes some getting used to. It is a lot different from

Len=1458
Len=1458
Len=1458
Len=1458
Len=1458

programming computers since you are designing a logic circuit instead of a collection of code

that runs sequentially. One of the best resources out there in my opinion, is the Mojo

Development Environment from Embedded Micro. (www.embeddedmicro.com) | consider it to

be the “Arduino” of FPGAs. The development board is based off of the Spartan six and comes

with a Arduino compatible microcontroller. The microcontroller acts as the JTag cable

eliminating the need for an expensive programmer from Xilinx. In addition to the development

board, there is an IDE very similar to the Arduino IDE. You can program the board from the IDE

and it even comes with a basic logic analyzer. On the Embedded Micro websites there are

plenty of tutorials to get started with as well as a selection of shields and add-ons.

Acknowledgements

Fermilab is operated by Fermi Research Alliance, LLC under Contract No.
DE-AC02-07CH11359 with the United States Department of Energy. QuarkNet is an

educational program sponsored by the National Science Foundation and the Department of

Energy whose aim is to support science education in schools by establishing a nationwide

network of science teachers. This work was supported by CRADA FRA-2014-0022-02

http://www.embeddedmicro.com/

agreement between Fermi Research Alliance LLC and the University of Notre Dame for the

2015-16 QuarkNet summer program.

Dr. Chris Stoughton
Ryan Rivera

Laura Thorpe

George Dzuricsko

The Quarknet Students

The Holometer Team

References

Atmel AVR 8-bit Instruction Set [Instruction set for Atmel 8-bit microcontrollers]. (2016).

From http://www.atmel.com/images/Atmel-0856-AVR-Instruction-Set-Manual.pdf

Crab Pulsar. (n.d.). Retrieved July 21, 2016, from

https://en.wikipedia.org/wiki/Crab_Pulsar

Field-programmable gate array. (n.d.). Retrieved July 22, 2016, from

https://en.wikipedia.org/wiki/Field-programmable gate array

Kumar, N. S., Saravanan, M., & Jeevananthan, S. (2010). Microprocessors and

microcontrollers. New Delhi: Oxford University Press.

X86 instruction listings. (n.d.). Retrieved July 22, 2016, from

https://en.wikipedia.org/wiki/X86 instruction listings

http://www.atmel.com/images/Atmel-0856-AVR-Instruction-Set-Manual.pdf
https://en.wikipedia.org/wiki/Crab_Pulsar
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/X86_instruction_listings

